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Abstract

The aim of this internship is to implement a method for joint modelling of satellite
image data and insurance claims processed in a British city using machine learning tech-
nique. Thus we want to be able to predict which areas of the city are at risk of suffering
material damage due to ground movement (for example due to maintenance works on the
underground lines). The satellite dataset can be viewed as a sequence of time series, each
coresponding to the evolution of the ground movement in a particular pixel of the images.
The insurance claims will firstly be modelled as the result of a Poisson-Cox point process
using reproducing kernels [1,2,4]. The satellite image data set will then be studied using
efficient time series analysis techniques and plugged into the point process as parameters of
its intensity. Using lasso regression[7,8], we will finally be able to detect the most influential
time series, thus allowing better assessment of the locations at risk.

Résumé

Le but de ce stage est d’établir un modele reliant les déclarations de sinistre dans une

ville britannique avec les déplacements de terrain mesurés par satellite et de I'implémenter
en utilisant des méthodes récentes de machine learning pour obtenir des informations
prédictives. Ainsi, nous voulons découvrir si nous sommes capables de prévoir quelles
zones de la ville risquent de subir des dégats matériels suite a des mouvements de terrain
( par exemple lors de travaux sur les lignes de métro). Nous disposons d une succession
d’images satellites de la ville, prises avec une fréquence réguliere, et pour chaque pixel de
I'image, de mesures du gradient de sa position. Ainsi nous considérons pour chaque pixel
I’évolution de ce gradient comme une série temporelle.
Les plaintes d’assurance sont tout d’abord modelisees comme le resultat d’un processus
ponctuel de Poisson Cox[1,2,4] . Puis les series temporelles sont inserees comme parametres
de l'intensite de ce processus ponctuel. Enfin, nous utiliserons une regression lasso pour
trouver la relation entre les deplacements de terrain et les plaintes d’assurance ainsi que
pour detecter les series les series les plus influentes|7,8].



1 Introduction

1.1 National Physical Laboratory

The National Physical Laboratory (NPL) is the national measurement standards labo-
ratory for the United Kingdom, based at Bushy Park in Teddington, London, England.
It is the largest applied physics organisation in the UK. Today it provides the scientific
resources for the National Measurement System financed by the Department for Business,
Innovation and Skills.

NPL also offers a range of commercial services, applying scientific skills to industrial mea-
surement problems and cooperates with professional networks to support scientists and
engineers concerned with areas of work in which it has expertise.

NPL is at the forefront of new developments in metrology, such as researching metrology
for, and standardising, nanotechnology.

1.2 Context

Big data is a very extensively studied multifaceted field. Big data often comes as multi-
variate time series obtained through sensor networks (satellite sensors in the case of this
internship). Decomposition of high dimensional time series into meaningful components is
a new field and only a few methodologies have been devised worldwide. Producing a new
method and a fast algorithm for this task will enhance NPL’s capability tremendously in
the field of time series analytics. The ability to handle extremely large dataset and ex-
plore its correlation structure allows to better understand the data and helps the decision
making process.

Moreover, I have studied during this internship various machine learning areas of interest
such as matrix completion, multiplicative update and Poisson Process estimation and have
tried to enhance NPL’s analysis tools. For example, the ability to estimate efficiently the
intensity of non-homogeneous Poisson Processes would be a great addition to NPL’s tools
that would find many uses in a lot of different areas.



2 Presentation of the model and sta-
tistical tools

2.1 Point Process

A Point process [9] on R? is a random variable on (T,.%#) where T is the collection of all
sequences ¢ of points of R? satisfying the following condition :

1. the sequence ¢ is locally finite (i.e. every compact set of R? possesses only a finite
number of points of @) ;

2. Vi # j, x; # x; (the process is said to be simple,but this condition is not necessary).

Another possible notation is ® = (X;);eny where X; are random variables on R<.

A point process ® thus possesses a probability distribution on (T,.%), the distribution
P of ®.
If B is a Borel set, let us note ®(w, B) the number of points of the realization of ®(w) in
the Borel set B. The random variable ®(B) : w — ®(w, B) is called a point count.

From Kolmogorov extension theorem , the probability distribution of ® is comple-
tely determined by its finite-dimensional distributions (®(B;), ..., ®(B,,)) where (B, ..., By,)
are bounded Borel sets.

Let A be a measure on R? so that for every bounded measurable set A A(A) is finite
(i.e. A is locally finite). Then A is a Radon measure.
A Poisson point process with intensity A on R? is a point process ® satisfying the follo-
wing condition : For every bounded disjoint subsets (Bj, ..., Bx) and non-negative integers
(n1,...,nx) € N*¥ we have that

P(®(B1) = n1, .., (B) = me) = [|

1=1

o~ AB) (A(Bi))™

® is said to be homogeneous if A(B) = A\|B| with A € R*



A point process ® is said to be stationary if for all y € R? & = (X;) has the same
distribution as ®, = (X; + ).
A point process is said to be isotropic if its characteristics are invariant by rotation, that
is to say that for every rotation r around the origin ® and r® have the same distributions.

2.2 Cox Point Process

A Cox point process is a generalisation of the Poisson point process where the intensity
A of the process itself is a random measure. For a Cox point process, we have the follwing
properties :

1. Given A, ®(B) is Poisson distributed with parameter A(B) for any bounded Borel
subset B

2. For any finite collection of disjoint subsets By,.., B, and conditioned on A(By),. ..,
A(B,,), we have that ®(B,), ..., ®(B,,) are independent.

When we can write A(B) = [, A(z)dz, X is called the intensity field or intensity function.

This will be very useful to model the insurance claims in this study. Indeed, these claims
can be seen as the realizations of a Cox point process on R? (a time dimension and two
spatial ones) whose intensity A depends on multiple parameters, including the one we are
focused on : ground movement.

In the case of our study, it seems logical to consider that buildings and human construc-
tions are at a greater to risk to suffer damages when there is a lot of ground movement.
Thus we consider that the intensity of the Point process generating the insurance claims
is random variable dependant on ground movement.

2.3 Reproducing Kernel Hilbert Space

Let H be a Hilbert space of functions mapping from a non-empty set X to R with scalar
product (f|g) and corresponding norm || f||* = (f|f).

For x € H the map 6, : H — R,d, : f — f(x) is called the Dirac evaluation functional
at x.



A Hilbert space H of functions f : X — R is said to be a Reproducing Kernel Hilbert
Space (RKHS) if 0, is continuous Vo € X. Thus norm convergence implies pointwise
convergence.

A function k : X x X — R is called a reproducing kernel of H if the following conditions
are met :

L. VeeXy:— k(y,z) e H
2. Ve e X,Vf € H, (f|k(-,z)) = f(z). This is the so-called reproducing property.

In a RKHS, thanks to the Riesz representation theorem, this kernel exists and is unique
[4,5].
Remark : the reproducing property gives (k(z;,-)|k(x;, ) = k(x;, x;).

What is very interesting with a RKHS is that, even if its dimension is infinite, optimi-
zation problems of the type :

min J(f(21), s f(@a)) + QL FI?) (2.1)

feH

are actually finite-dimensional problems :

If X is compact and k is continuous, let us define the integral kernel operator T} :
Ly(X) :— Ly(X) given by Trg = [; k(z,-)g(x)dx. Ty is positive, self-adjoint and compact,
thus its eigenfunctions {e;},en+ are orthornormal and its eigenvalues {n;};en+ positive.
Mercer’s theorem holds that :

Va,y, € X, k(z,y) = Z niej(x)e;(y) (2.2)

2
Any function f € H can be written as f =Y 8;e; with || f||*> = > i—ﬂ < 00 [6]. If we write

f as the sum f(-) = Y1, a;k(x;, -) + v where v is orthogonal to the span of {k(z;, ) }1<i<n,
using the reproducing property we have that

fla) = (fIkC,2) =Y (kg )k, ) + 0]k, 2:)) = Z%’k(%xi) (2.3)

J=1

Furthermore, we see that :
137 k() + 0l = 13 ks P+ ol = 1Y ek )P (24)
i=1 i=1 i=1
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Thus choosing v # 0 can only increase the objective function in (3.1) and the minimizer
can be written simply as f*(-) = Y., a;k(x;,-), which reduces the problem to finding
a e R”.

2.4 Lasso regularization
Many statistical problems are modelled using the classical regression equation
Y =Xp+¢ (2.5)

where X is a n X p matrix of explanatory variables, § € RP is the unkmown parameter
we want to estimate, Y € R"™ is our response vector and ¢ € R™ is the error vector often
assumed to be Gaussian-centered.

The LASSO estimator of 3 is the solution of the following minimization problem [7,8] :

By = argmin [[Y" — X85 + Al[| 8]l (2.6)
BERP

The LASSO estimator shrinks the components of the regular least square estimator and

even sets some of them to zeros, thus automatically doing model selection based on the

value of parameter A [10]. So it is a very helpful tool for statisticians working in a high

dimensional environment as it can significantly reduce the number of relevant variables in

a model.

2.5 Model

Our satellite data set is made of a number T of satellite images, each with N pixels. At
each pixel, the ground movement can be measured accurately by the satellite, thus giving
us knowledge of a N-dimensional time series matrix X € RT*V,

From our insurance claims data, we want to be able to estimate the intensity function
A of the Cox point process. We will write \;(¢),1 < i < N,1 <t < T the value of the
intensity function A at the location corresponding to pixel i and image t. We thus propose
to model the dependency between the intensity function and the time series values :

K N
Ai(t) = doiexp(d D B Xikj) + el (2.7)

k=0 j=1



Bt e RV*T and \p; € R,1 < i < N are unknown parameters. (€!)j<i<ni<i<7 is the
remaining error supposed to follow a Gaussian N (0, 0?) distribution.

So each pixel has its owns regression parameters on all the values of the time series on
the last K+1 images. We can expect 3 to be sparse since it is very likely that the ground
movement in one pixel is only correlated to a few other (nearby pixels).

To try and retrieve this sparsity, we will use LASSO regression on the slightly modified
vectors and matrices :

Bl
1 /BZ2
gim | 2.5)
Bk
X1, Xo, - X1-k..
, X X R Xo )
X _ 2, 1, ' 2—-K, (29>

X Xpoq, - Xr_k

5

Where ') is the first column of 5* and X the first line of X. If i < 0, X;  is equal to a
null vector of corresponding size.
These are basically matrices 3° and X conveniently re-scaled so that we can write

A= )\Oiea:p(Xlﬁli) +é (2.10)

We can then obtain a classical LASSO minimization problem :

B = arﬁg %in llog(As) — log(Ao;) — X B3 + cll| Blh (2.11)
eRP



3 Cox point process intensity estima-
tion with reproducing kernels

3.1 General idea

As previously stated, we assume that the insurance claims in our data set are the result of
a Cox point process on a compact domain S = [0, al] x [0, b1] x [0, t1] representing the city
of London during a certain time frame. We use the nonparametric method developed by
Seth Flaxman, Yee Whye Teh and Dino Sejdinovic in [1] to estimate the intensity function
of the process using reproducing kernels. The intensity function A of the point process is
modelled by :

Vo € S, \(z) = af*(r) (3.1)

where function f belongs to an RKHS H with kernel £ : S x .S — R and a > 0 is a scale
parameter.

We then write the log-likelihood corresponding to some observations {z;, 1 <i <n} :
(21, 2 N) =D log(A(xs)) — / Mz)dz (3.2)
i=1 s

And we add a term corresponding to the square Hilbert space norm ||| of f to obtain
the following penalized minimization problem :

min— 3 loglaf*(w) + o | Flo)de -+l 33)

feH

Flaxman et al. showed that a solution of (4.3) can be found in another particular Kernel

space H with kernel function k = 3 ; an"_jﬂ e;(z)e;(x") by minimizing the following objective
J

function :

() = =D _loglaf* (@) + || fII% (34)

Moreover, the solution takes the form f(-) =>"" | a;k(wi,-)

10



3.2 Computation

We will try to approximate Mercer decomposition of k with eigenvalues {7;};en+ and
eigenvectors {e; }jen from 2.2 :

Va,y, € X, k(z,y) = > mie;(x)e;(y)

JEN*

We will sample m points uq, ..., u,, uniformly from the domain S and we create the Gram
matrix K, defined by [Ky,];; = k(u;,u;). Let R and Q be respectively the matrices of
eigenvalues and corresponding eigenvectors so that

Ky = QRQ (3.5)

Further works from [1,11, 12] shows that the Gram matrix [K];; = k(z;, ;) can be esti-
mated by matrix f(m : A
m

where [K,,)ij = k(x;,u;). We can then write, with oo = (o, ..., )"

() = =D _loglaf*(@:)) + I fII%

n " (3.7)
J(a) = — Z log(a(z ajk(zi,1;))?) + o' Ko
Hence
VJ(a) = —QiL +2Ka (3.8)

Thus we can minimize the penalized likelihood with gradient descent.

3.3 Simulation

We simulated non homogeneous Poisson point processes on [0, 1] x [0, 1] to test and calibrate
the method. The intensity of the process is a randomized sum of Gaussian functions.

11
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F1GURE 3.1 — Example of a Cox point process

We simulate the point process by thinning[2], i.e. we firstly simulate a homogeneous
Poisson point process whose intensity is an upper bound M of the desired non constant
intensity A(-). Then, for each point i of the point process with coordinates (z;,y;), we draw
a uniform variable w; on [0,1]. If u; < A(zy,y;)/M, we keep the point in our desired process,

else we delete it.

The hyperparameters v and the lengthscale of the Gaussian kernel are chosen through
cross-validation. To estimate parameter a, we proceed differently from [1] and compute it

during the gradient descent so that :

a

N N

T [ P@dr [, agk(ag, )2 (@) da

12
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FIGURE 3.2 — Intensity of the Cox process

3.4 Results

Our real insurance claims dataset consisted of 817 claims made in an English city from
April 2016 to May 2017(fig 3.3). The coordinates of the claimants have been modified for
anonymity’s sake.

3.5 Clustering approach

Another idea we had to find the intensity function was to cluster our insurance claims data
set ans then set a Gaussian function at the centre of each cluster with a scaling parameter
corresponding to the number of points in the cluster. The benefit of this method was that it
was really fast, however, every error in the clustering would lead to a very biased intensity
estimation, which is the reason we didn’t chose this method in the end. One other challenge
of this approach is to automatically find an adequate number of cluster for a given data
set. So here is a description of the clustering methods considered for the projects.

3.5.1 K-means

Firstly, we tried the well known K-means method to cluster our data set. To find a good
parameter k for the data set, we used Bayesian information criterion (BIC)[14] and the
silhouette method[13], decribed below :

13
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FIGURE 3.3 — Spatial representation of our insurance claims dataset

We cluster our data set with K-means, with k varying from 1 to 15. For every clustering
done and for every data point ¢ in a given clustering, two values are computed :

1. a(7) measuring the average dissimilarity with the other data points within the clus-
ter.

2. b(i) measuring the lowest dissimilarity of ¢ to another cluster.
The silhouette is defined by

. b(i) — a(i)
= 3.10
) = a(ad), b)) (3.10)
Functions a and b are usually based on the distance used to do the K-means clustering.
When s(7) is close to 1 it means that a(i) << b(7) so the data point is well clustered. To the
contrary, if s(i) is to close to -1, then it means that the cluster of i is badly chosen. Thus,
using the average silhouette value for a given k gives a method for selecting an appropriate

k.

Despite its efficiency, K-means clustering has drawbacks. It can fail to distinguish clusters
that are close to each other and sometimes it creates new clusters just for a few outliers,
thus distorting the overall intensity.

3.5.2 Minimum Spanning Tree based clustering

The minimum spanning tree of a data set is the subset of edges that connects all the data
points together with the minimum total edge length or edge weight (figure 3.4). There

14
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FIGURE 3.5 — Examples of clustering obtained from the MSDR algorithm [3]. We can see
that if the density is non homogeneous, the algorithm may fail to detect the right clusters

are multiple clustering algorithms based on the minimum spanning tree. The interesting
property of a minimum spanning tree is that it is without cycles. Thus, every edge that is
removed from the tree will create two separate trees. Thus removing edges is a natural way
of clustering our data. The algorithms from Grygorash, Oleksandr, Yan Zhou, and Zach
Jorgensen[3] aim to minimize the within cluster edge length standard deviation. This way
of clustering has the added benefit of detecting clusters of any shape (figure 3.5), however
it requires the clusters to be well separated and once again, the presence of possible outliers
may greatly bias the results.

15



4 Time Series Analysis

Our ground movement dataset consists of millions of ground movement measurements
spread across Great Britain in space and several years in time. However, if we note Nts
the number of time series and T' the number of time steps, we have that Nts >> T, that
is to say we have measurements for hundreds of thousands of positions in the country but
only for hundreds of dates. Thus, we will use sampling to reduce the number of time series
used for our analysis.

In addition to being useful for evaluating and predicting insurance claims, this dataset
also contains interesting information in itself. We thus wanted to better understand our
dataset, to see for example the potential correlations between the various time series, if
there were any clusters, or whether neighbouring time series behaved similarly or not. To
this end, used Prony’s method to separate the trend and seasonality from the noise of the
time series[15,16].

4.1 Prony’s method

Prony’s method is a useful method for modelling signals using a finite sum of exponential
terms. Let us note (Y;);—1__r one of the time series that we observe. It can be split into
different signals : the trend, the seasonality and the noise. Our goal is to separate the noise
€; from the rest of the signal Y;. To this end, we will approximate the original signal with
a sum of exponential of the type :

K
Sy = Z Ccrzy (4.1)
k=—K

where the 2z, k = —K, ..., K are complex numbers. If they have modulus 1, this gives
sinusoidal functions. Otherwise it corresponds to a damping factor. So this is a more
flexible model than the well-known Fourier Transform. The frequencies obtained need not
be multiples of the same base frequency. We will then assume that Y; = s; + €.

16



The Prony method is a way of computing the complex numbers z;. First, we consider
the singular matrix

S1 So Sp
So S3 e Spa1
So=1| . . (4.2)
ST—r+1 ST—r+2 - ST

Let v € Ker(S,), then the z; belong to the set of roots of the polynomial
p(z) = Z v 2" (4.3)
i=1
So the elegance of Prony’s method is that we recover the sum of exponentials that recons-
truct a given signal simply by solving a linear algebra problem. Now that we have the
numbers z;, we want to recover the values ¢;. In a setting without noise, ie s; = Y, we
would only need to solve the following Vandermonde linear system :

-K -K -K
- : - (4.4
K K K

It has been shown in [15] that using a nuclear norm penalization improves the efficiency of
Prony’s method, particularly with respect to noise and missing data. So this is the method
that we used in practice. The first thing that we do is approximating the original matrix
Hank(y) by a matrix Y of lower rank.

1 Y2 e Y
Hank(y) = ?{2 y.3 yr.ﬂ (4.5)
Yr—r+1 Y1—r+2 -+ YT

The idea is that the noise will add new frequencies in the signal and that by reducing the
rank, we reduce its effect. We can do that by using a least-squares minimization with the
nuclear norm penalization :
1
min —||Hank(y) = Y| + A||Y |+ 4.6
Jin S| Hank(y) ~ Y| + AV (4.6)
where Hy x is the set of matrices with the same size as Hank(y). The coefficients zj can

then be retrieved in the same way as in the original method. As for the coefficients ¢, we
run a simple least-squares minimization procedure.

17



107 Laplacian Eigenmaps visualization of the time series PCA visualization of the time series.
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FIGURE 4.1 — 2D Visualization of 5000 time series uniformly sampled in London with 54
time steps over 2 years.
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FIGURE 4.2 — 2D Visualization of the noise resulting from the same 5000 time series.

4.2 Dimensionality Reduction

In this section, we present representations in two dimensions of some time series sam-
pled from our dataset using classical dimensionality reduction techniques like Principal
Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE)[17],
Laplacian Eigenmaps or Maximum Variance Unfolding (MVU) from the very useful tool-
box of Laurens van der Maaten (https ://lvdmaaten.github.io/drtoolbox/).

It appears difficult to notice clusters, especially from the PCA representation of the data,
which resembles a Gaussian distribution. Nevertheless, the t-SNE representation of the
noise shows some little clusters around the main one, so we tried anyway to cluster the
time series by fitting a Gaussian mixture distribution [18].

18
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FIGURE 4.3 — 2D Visualization of the trend and seasonality resulting from the same 5000
time series.
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FIGURE 4.4 — 2D Visualization of 5000 time series sampled within 50meters of insurance
claims locations
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4.3 Visualization of the time series

Using Akaike information criterion and Bayes Information Criterion, we tried to cluster
the "smoothed” signal obtained from Prony’s method. This revealed some very interesting
clusters (shown in fig 4.5). The fact that some of these clusters correspond to geographic
areas seems to show that this clustering is meaningful. Furthermore, when we compare the
clustering with the geology map of the city, it looks like the separation between the two
ground types (shown in grey and green) roughly corresponds to the separation between
the blue and cyan clusters. This is encouraging and does seem to prove there is indeed
a link between the values of the time series and the type of ground they are located in.
As can be seen in figure 4.6, using the 95th quantile of the Gaussian distribution seem
to capture most of the time series within a cluster, so modelling our data with Gaussian
distributions appears to be a valid assumption.

20
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model using AIC with a geology map of the same city
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10 - Representation of a Time Series cluster and its statistical properties
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FIGURE 4.7 — Representation of the time series average per cluster
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5 Matrix Completion

The problem of missing values in our dataset led us to study the question of matrix
completion [19,21]. Tt consists of recovering a complete matrix using only some of its
observed entries. This is a recurring problem in collaborative filtering and recommendation
system. For example it was the subject of the famous ”Netflix Prize” that challenged
hundreds of teams across the world to predict user ratings for films. In our case, our goal
would be to recover the missing values of our time series.

In this type of problems, the matrix is assumed to be a low-rank one. In the case of the
netflix prize, one could see it as the equivalent of saying that there are trends among users
and thus the ratings of may users will be similar because of their common preferences. In
our case, the clusters that we could identify lead us to believe that the same hypothesis
should be true, i.e. that many time series behave very similarly and that we can assume
that the Nts x T matrix containing all the values of the time series is of low rank. In this
chapter, we will present two online matrix completion methods.

5.1 Nuclear norm minimization

This first method uses a basic observation from the Singular Value Decomposition of a
matrix. Any n X p matrix A of rank r can be decomposed as :

A= Zajujv} (5.1)
j=1

where r is the rank of A, 0%, ...,0% are the nonzero eigenvalues of ATA and uy, ..., u,

and vy, ..., v, are two orthornormal families of R" and RP such that AATu; = a?-uj and
ATAv; = a?vj. As the rank of matrix A is equal to its amount of nonzero singular values,
one may be tempt to solve the matrix completion problem by penalizing the nuclear

norm :||A||, = trace (\/ATA> = > i_,0i(A). As in the case of the LASSO penalization,

using the L1 norm results in a sparse vector, penalizing with the nuclear norm will give us
some null singular values and thus a low rank solution.
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The idea presented by Lafond, Wei and Moulines in [22] is to use a stochastic version of
the Frank-Wolfe algorithm to solve the following problem (which is equivalent by duality) :

min f(0) = | M = 0|5, C. = {0]19]l. < R} (5.2)
eCr

The benefit of the Frank Wolfe method is that there is no need to project on the set of
constraints. We simply need to solve a linear problem at each step t :

a; = argmin(a, Vf(6;)) (5.3)

aeC

Now, Vf(0) = 2(U — M), so minimizing the scalar product of a with 2(U — M) with
respect to ||0||. < R comes down to finding the top singular vectors of U — M, u; and vy,
and then setting

ay = —Ruqv]

where v, = and K € N* is a step size parameter. After each iteration, we update

_K
t+K -1

Ori1 = (1 — )0 + nau

t

With this method, the error decreases as O ( M).

5.2 Alternating Minimization

Alternating minimization represents a widely applicable and empirically successful ap-
proach for finding low-rank matrices that best fit the given data. For example, for the
problem of low-rank matrix completion, this method is believed to be one of the most
accurate and efficient, and formed a major component of the winning entry in the Netflix
problem. In the alternating minimization approach, the low-rank target matrix M of size
dl x d2 is written in a bilinear form :

M =UVT (5.4)

where U is of size d1 x k, V of size d2 x k and k is the rank of M. The algorithm then
alternates between optimizing U and V. While the overall problem is generally non-convex,
each sub-problem where one of the two matrices U or V is supposed to be constant is
convex.
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For example, the algorithm devised by Chi, Kakade and Netrapalli [19] starts by taking
the top k SVD of %Mimt to initialize Uy and V[y. We thus make sure that we are working
with a k-rank matrix.

Then at each step t = 1,.., T, we recover Wy DW]! the SVD of U;_,1V;" | and renormalize
U, = WyD:

Vio, = Wy D>

After we get a new observation M, ;, we update :
Ut = ﬁt—l - QndldQ(Ut_l‘;;T_l - M)iyjeie;f/t_l

‘/;5 = ‘25_1 - 277d1d2(0t_1‘;;-r_1 — M)i,jejeZTUt_l

which can be seen as a gradient descent with step parameter 7. To obtain Frobenius norm
error €, this method requires O (log(1/€)) time steps. While, alternating minimization me-
thods are not as well understood as the other optimization methods for matrix completion,
they show very good empirical results and are very successful in practice.

Moreover, in the case where M is symmetric and can thus be written as M = UU?, it
has been shown[21] that the objective function

FU) = My — (UUT);,? (5.5)

INISIY)

where 2 is the set of observed entries of M, has no spurious local minima. So any local
minimum U of f is actually a global minimum with f(U) = 0 and thus recovers a correct
low-rank factorization of M. However, given that for any orthonormal matrix R, we have
UUT =URR'UT = UR(UR)T, this factorization is not unique. But all these solutions are
equivalent.
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6 Conclusion

Analyzing ground movement time series has been a very enlightening experience. We have
seen thus far that there is indeed a relation between the values of a time series and its
geographical position, as shown by the existence of separated clusters. However, it is hard
at this point to know if our LASSO regression has good predictability value since we only
have two years of observation data and thus it is hard to correctly take into account the
yearly seasonality. A greater time frame would allow us to build a better test to gauge the
validity of this regression.

Moreover, we have created several useful tools which will enhance NPL’s ability to
handle and analyze time series and point processes. These tools can be readily applied
without much tinkering, which should help NPL’s future projects. Finally, this internship
has been a great learning experience for me. I have become familiar with many statistical
and mathematical tools such as LASSO regression, Prony’s method, various clustering
techniques and Poisson point processes.
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